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SOLVING GRAPH LAPLACIAN SYSTEMS THROUGH RECURSIVE BISECTIONS
AND TWO-GRID PRECONDITIONING

COLIN PONCE† AND PANAYOT S. VASSILEVSKI‡

Abstract.
We present a parallelizable direct method for computing the solution to graph Laplacian-based linear systems derived

from graphs that can be hierarchically bipartitioned with small edge cuts. For a graph of size n with constant-size edge
cuts, our method decomposes a graph Laplacian in time O(n logn), and then uses that decomposition to perform a linear
solve in time O(n logn).

We then use the developed technique to design a preconditioner for graph Laplacians that do not have this property.
Finally, we augment this preconditioner with a two-grid method that accounts for much of the preconditioner’s weaknesses.
We present an analysis of this method, as well as a general theorem for the condition number of a general class of two-grid
support graph-based preconditioners. Numerical experiments illustrate the performance of the studied methods.

Key words. graph Laplacian, recursive bisection, support graph preconditioners, two-grid methods.

1. Introduction. Recent years have seen an explosion of interest in studying large networks. The
graphs representing these networks often reach hundreds of millions or billions of nodes; as a result, only
the most scalable of algorithms are practical in network analysis.

One problem often of interest is solving linear systems based on graph Laplacians. Graph Laplacians
appear in many areas, such as information dispersal through social networks or electricity flow through
resistor networks. When graphs are large, general sparse linear solvers are not typically fast enough to
be feasible. Thus, we must develop specialized graph Laplacian linear solvers.

In this paper we first consider graphs that can be hierarchically bipartitioned with small edge cuts.
This graph structure appears in networks in which a small number of “high-bandwidth” interconnects
stretch between distant clusters of nodes. For example, transportation systems and wide area computer
networks often have this property.

Our method takes a two-step approach: first, perform a fast computation that results in highly
structured error; second, exploit that structure to make error correction cheap. In our case, we recursively
solve linear systems over each of the isolated graph partitions, ignoring the edge cuts. This results in an
error vector that lies in a low-dimensional subspace determined by the edge cut. We then correct the
error using the Sherman-Morrison-Woodbury formula.

We then extend this method to develop a preconditioner for graph Laplacians that lack this property.
We recursively partition the graph and remove between-partition edges as needed until we obtain a
support graph that has the desired property. The solution of linear systems of the graph Laplacian of
this support graph acts as our preconditioner.

Finally, we accelerate this preconditioner using two-grid techniques. A simple node aggregation
technique leads to a coarse basis whose span often approximately captures the error modes that most
damage the condition number of the preconditioned system. We develop a formula for the condition
number of two-grid support graph preconditioned systems, and use this to develop guidelines for support
graph creation.

Our direct solver is similar in spirit to nested dissection [7, 11]. This technique is also a direct
solution method for linear systems based on graphs. It recursively splits the graph into two roughly
equal sets by finding a separating set of nodes. Ordering the system matrix according to this recursive
partitioning leads to a fast method for such linear systems. While our method also uses a recursive
partitioning of a graph, it is based on edge separators instead of node separators.
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Support graph preconditioning has grown in popularity since Spielman and Teng’s seminal work
on using ultra-sparsifiers to create support graphs with good conditioning [12]. Since its publication,
various authors have improved on the graph-theoretic algorithms underlying the preconditioner, thus
improving its theoretical complexity [9].

While these papers develop algorithms with good theoretical complexity, practical implementations
of these methods do not exist. In this paper we take the approach of developing implementable algorithms
and demonstrate their performance on graph Laplacian systems derived from both synthetic and real-
world graphs.

A key element of our preconditioner is the use of coarse-grid corrections. Multigrid algorithms were
first developed as effective preconditioners for large finite element problems on geometric meshes. Since
its introduction in [4], algebraic multigrid methods (AMG) have adapted the original multigrid scheme
for use in linear systems with no underlying geometry.

The rest of the paper is organized as follows. Section 2 defines the graph Laplacian and the problem
we solve. Section 3 derives our direct hierarchical method. Section 4 proves the complexity requirements
for the algorithm. Section 5 shows how this method can be used to construct a support graph precondi-
tioner, and Section 6 improves this preconditioner using a two-grid approach. Finally, Section 7 shows
experimental results, and Section 8 concludes.

2. Problem Statement. Suppose we have a graph G = (V,E), where V is a set of vertices, and E
is a set of edges (pairs of vertices (u, v) ∈ V × V ), with each edge having an associated weight wuv. We
consider undirected graphs, which means that if (u, v) ∈ E, then (v, u) ∈ E with wvu = wuv. In what
follows, we assume that G is a connected graph; that is, any two vertices u and u′ can be connected
by a path of edges (us−1, us) ∈ E, s = 1, 2, . . . , m = m(u, u′), where u0 = u and um = u′. Another
notation that we use in what follows is 1 = (1) being the constant vector with unit entries; also the ith
unit coordinate vector is denoted by ei.

The graph Laplacian is a matrix representation of an undirected graph. It is defined as follows:

Luv =

{
−wuv (u, v) ∈ E

0 otherwise

Luu =
∑

v:(u,v)∈E

wuv (2.1)

Note that L = LT and the sum of each row and each column of L is 0, and so L1 = LT1 = 0.
Thus, the problem of interest is to solve the linear system

Lx = b (2.2)

for x, where 1T b = 0.
In Section 3, we focus on connected graphs that have a p-cut of η edges, with each component

G1, ..., Gp of roughly equal size. Let V1, ..., Vp denote the vertices of the components, and ni = |Vi|. Let
C denote the set of edges of the cut, so that η = |C|.

3. Derivation.

3.1. A Two-Level Hierarchy. The graph Laplacian is a singular matrix. First, we modify the
problem to an equivalent but invertible one.

Lemma 3.1. Given a connected graph Laplacian L, some non-zero vector e with non-negative
entries, and some w > 0, let

L = L+ weeT . (3.1)

Then
1. L is invertible.
2. L is positive-definite.
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3. If 1T b = 0 and Lx = b, then Lx = b as well.

Proof. To prove (1), suppose L is singular. Then there exists a vector x such that

Lx = −weeTx.

The only null vector of the left-hand side of this equation is 1, which is not a null vector of the right-hand
side, so Lx 6= 0. So, for the above relation to hold, we must have Lx ∝ e. But e /∈ range(L), as it is
not orthogonal to 1. Thus, there is no such vector x.

To show (2), Note that

xTLx = xTLx+ w(eTx)2.

Both terms on the right-hand side are at least zero, so L is positive semidefinite. By (1), L is invertible,
and so is positive definite.

To prove (3), note that

0 = 1T b =1T
(
L+ weeT

)
x = 0Tx+ w(1Te)(eTx).

The factor 1Te 6= 0, so the above relation holds if and only if eTx = 0. Therefore,

Lx = Lx = b.

Consider the block-diagonal matrix

L̂ =

L1

. . .

Lp

 . (3.2)

Then L has the form

L = L̂+
∑

(u,v)∈C

wuvduvd
T
uv, (3.3)

where duv = eu − ev. Note that for L = L+ weupe
T
up , we have

L = L̂+ weupe
T
up +

∑
(u,v)∈C

wuvduvd
T
uv.

We choose w = 1.

Now, we wish to solve for x in Equation (2.2). We will do this by first solving a set of smaller
systems of equations on each of the L1, ..., Lp. But we want each of these sub-systems to be invertible
as well. So, for each j = 1, ..., p, let uj denote the index of a vertex in Vj . Then

L = (L̂+

p∑
j=1

euje
T
uj )−

p−1∑
j=1

euje
T
uj +

∑
(u,v)∈C

wuvduvd
T
uv

= L̂ −
p−1∑
j=1

euje
T
uj +

∑
(u,v)∈C

wuvduvd
T
uv

= L̂ +FTWF, (3.4)
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where

F = [E D] (3.5)

E =
[
eu1 · · · eup−1

]
(3.6)

D = [· · · duv · · · ](u,v)∈C (3.7)

W =diag(−T, S) (3.8)

T =diag(1) (3.9)

S =diag(· · · , wu,v, · · · ). (3.10)

Note that the matrix L̂ is block-diagonal of the form

L̂ =

L1 + eu1e
T
u1

. . .

Lp + eupe
T
up

 ,
where each block has the same form as in Equation (3.1). Hence each block of L̂ is itself an invertible
matrix, by Lemma 3.1, so L̂ is invertible.

Lemma 3.2. The matrix

− T−1 + ET
(
L̂+DSDT

)−1
E (3.11)

is symmetric negative-definite.
Proof. As shown above,

L = L̂+DTSD − ETTE

is symmetric positive-definite. Then so is(
L̂+DTSD

)−1/2
L
(
L̂+DTSD

)−1/2
= I −RRT

where

R =
(
L̂+DTSD

)−1/2
ETT 1/2.

Then

I −RTR = I − T 1/2ET
(
L̂+DTSD

)−1
ET 1/2

is also symmetric positive definite. Pre- and post-multiplication by T−1/2 proves the result.
Theorem 3.3.

L−1 = L̂−1 + L̂−1F
(
W−1 + FT L̂−1F

)−1
FT L̂−1. (3.12)

Proof. We must show that W−1 + FT L̂−F is invertible. Note that

W−1 + FT L̂−1F =

[
−T−1 + ET L̂−1E ET L̂−1D

DT L̂−1E S−1 +DT L̂−1D

]
. (3.13)

The lower-right block is symmetric positive-definite, hence invertible. The respective Schur complement
is

−T−1 + ET
(
L̂−1 − L̂−1D

(
S−1 +DT L̂−1D

)−1
DT L̂−1

)
E.

4



G = G0
1 G1

1 G1
2

C1
1,2

G2
1

G1
2

G2
3

G2
4

C1
1,2

C2
1,2 C2

3,4

Fig. 3.1. Three different views of the hierarchically decomposed graph G. Here G = (V,E) is decomposed as
G = (V 1

1 ∪ V 2
2 , E1

1 ∪ E1
2 ∪ C1

1,2), and G1
1 = (V 1

1 , E1
1) and G1

2 = (V 1
2 , E1

2) are decomposed similarly.

Note that L̂, S, and S−1 +DT L̂−1D are all invertible. We may therefore apply the Sherman-Morrison-
Woodbury formula (see, e.g. Proposition 3.5 of [13]) to rewrite the above as

−T−1 + ET
(
L̂+DSDT

)−1
E.

Lemma 3.2 shows us that this matrix is negative definite and therefore invertible.

Thus, both the lower-right block of Equation (3.13) and its Schur complement are invertible, proving
that W−1 + FT L̂−1F is invertible. Therefore, we may again apply the Sherman-Morrison-Woodbury
formula to Equation (3.4) to obtain the result.

3.2. Multilevel Hierarchies. We can modify this decomposition to allow it to handle much larger
cuts by imposing some extra restrictions on the structure of the cut. In particular, suppose the graph
can be recursively cut into p components such that each p-cut consists of at most η edges. Then we may
apply our decomposition recursively, decomposing each sub-problem using another call to the decompose
function.

This creates a hierarchy of subgraphs. Let Gνi denote subgraph i at hierarchy level ν, for ν =
0, ..., νM , where νM ' O(log n). So G = G0

1, and in Equaton 3.2, each Li refers to G1
i . We may globally

index all level-ν subgraphs as Gν1 , ..., G
ν
pν , or we may refer to the children of Gνi as Gνi,1, ..., G

ν
i,p. See

Figure 3.1 for a diagram of this hierarchy.

Define graph Laplacians Lνi , vertex sets V νi , subgraph edge sets Eνi similarly. We define Cνi,j to be
the level-ν edge cut between Gνi and Gνj , or Cν to be the total level-ν edge cut.

Algorithms for graph decomposition as well as solution are shown in Algorithms 1 and 2.

4. Complexity. In this section we derive the time and space complexity of the hierarchical decom-
position algorithm. Assume that at each level of the hierarchy, we partition the graph into at most p
partitions with an edge cut of size at most η.

4.1. Solve Time Complexity.

4.1.1. For Dense b. We consider here the case in which the decomposition has already been
computed at for each of the logp n levels of the hierarchy, and we wish to find an x such that Lx = b

for some b such that 1T b = 0. In the following, we use Ŵ as defined in Algorithm 1.

Suppose we have already computed x̃ = (L̂νi )−1b, and we wish to compute (Lνi )−1b. The amount
of time required for this computation is given by the following steps:

1. Compute b′ = FT x̃. The matrix F has special sparse structure (see (3.5)), so this takes time
η + p− 1.

2. Solve a linear system Ŵy = b′. Assuming we have already factored Ŵ , this takes time at most
(η + p − 1)2.

3. Compute y′ = F̂y. The matrix F̂ is in general dense, and has size nν × η+ p− 1. So, this takes
time nν(η + p− 1).

4. Add the result as x = x̃+ y′. This takes time nν .

So, this step requires time O(nν(η + p)). But at the ν’th level of the hierarchy, nν = n/pν , so in
total this step takes time O(np−ν(η + p)).
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Algorithm 1 Construction of HDecomp Object

1: function hatLinv(b;H.P, ν)
2: Split b into subvectors b1, ..., bp.
3: for j = 1, ..., p do
4: xj ← HSolve(H.P [j], bj)
5: end for
6: return [x1, ..., xp].
7: end function
8: procedure HDecomp(Gνi , ν)
9: Initialize object H

10: Find Gν+1
i,1 , ..., Gν+1

i,p .

11: for subgraph Gν+1
i,j , j = 1, ..., p do

12: H.P [j] ← HDecomp(Gν+1
i,j , ν + 1)

13: end for
14: L̂−1 ← hatLinv( · ;H.P, ν + 1).
15: Construct F as in (3.5).

16: Compute F̂ ← L̂−1F .
17: Compute and factor Ŵ ←W−1 + FT F̂ .
18: Return L̂−1, Ŵ , F, F̂ .
19: end procedure

Algorithm 2 Hierarchical Solve

Require: 1T b = 0.
1: procedure HSolve(H, b)
2: if b = 0 then
3: return 0.
4: end if
5: L̂−1, Ŵ−1, F, F̂ ← H.
6: Recursively compute x̃← L̂−1b.
7: Solve y ← Ŵ−1FT x̃.
8: x← x̃− F̂y.
9: return x.

10: if top of hierarchy then
11: x← x− n−111Tx.
12: end if
13: end procedure

Now we wish to do this for each i = 1, ..., pν in this level of the hierarchy. Thus, the time required
to solve Lνi x = b for all i is

O

(
pν

n

pν
(η + p)

)
= O(n(η + p)). (4.1)

Note that this time is independent of the hierarchy level ν. We must do this for each level of the
hierarchy, of which there are logp n, for a final solve time complexity of

O((η + p)n logp n). (4.2)

4.1.2. For Sparse b. If b has only a small number of nonzero entries, the problem is easier.
Suppose that b has only κ nonzero entries. Then at each hierarchy level ν, bνi = 0 for all but at most κ
of the indices i. The solution on these sub-vectors is simply 0.
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So, at the ν’th level of the hierachy, instead of needing to compute pν inverses (Lνi )−1bνi , we need
only compute κ of them. Thus, the time requirement at each level of the hierarchy is not O((η + p)n),
but

O

(
(η + p)κ

n

pν

)
. (4.3)

We must do this for each of the logp n levels of the hierarchy. However, at each hierarchy level ν,
there are only at most κ node sets V νi for which b has nonzero values. Therefore, the time requirement
at each hierarcy level ν is given by (4.3), and so the total time complexity is

O

logp n∑
ν=1

κ(η + p)np−ν

 ≤ O((η + p)nκ

∞∑
ν=1

p−ν

)
= O ((η + p)nκ) (4.4)

4.2. Decomposition Time Complexity. Now we derive the time complexity associated with
computing the decomposition at each level. We do not propose a particular algorithm or time complexity
associated with the partitioning step; we simply refer to the time required to partition a graph as ψ(n, p).
A number of efficient partitioning algorithms and software packages are available, such as METIS [8]
or SCOTCH [5]. Note that we also assume that whatever partitioning algorithm is used it successfully
finds an edge cut of size at most η.

Construction of the hierarchy occurs in a top-down fashion, followed by computation of F̂ νi and

computation and factoring of Ŵ , which occurs in a bottom-up fashion. For the top-down phase, we
simply call whatever partitioning algorithm we use. At level ν in the hierarchy, each call costs ψ(n/pν , p),
and there are pν of them to perform. Thus, the cost of the top-down phase is

O

(
logn∑
ν=1

pνψ(n/pν , p)

)
(4.5)

If the partitioning method takes time O(n), then this step takes O(n logp n) time.

Now, for the bottom-up stage. Assume that the decomposition has been completed for all hierarchy
levels beyond ν. We wish to compute F̂ νi = L̂−1F . Because each column of F νi is sparse with κ ≤ 2,

computing each column of F̂ νi requires the sparse solve time O((η+p)np−ν) (see (4.2)). There are (η+p)
such vectors to compute, so the computation costs time O((η + p)2np−ν).

We must then compute and factor Ŵ . The matrix W is diagonal of size η+p−1, so the computation
of W−1 requires time O(η + p − 1). The computation (F νi )T F̂ νi requires constant time for each entry,

because F νi is sparse, for a total of O((η + p)2). Therefore, the construction of Ŵ requires time

O
(
(η + p)2np−ν + (η + p)2

)
= O

(
(η + p)2np−ν

)
.

The factorization of Ŵ then takes time O((η + p)3). Thus the total computation time is

O
(
(η + p)2np−ν + (η + p)3

)
. (4.6)

There are pν such decompositions to compute at for level ν, resulting in a time of

O
(
(η + p)2n+ (η + p)3pν

)
(4.7)

for level ν.
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We must do this for each of the logp n levels, resulting in a total time complexity of

O

logp n∑
ν=1

(η + p)2n+ (η + p)3pν

 =O

(η + p)2n log n+ (η + p)3
logp n∑
ν=1

pν


=O

(
(η + p)2n log n+ (η + p)3

p1+logp n − 1

p− 1

)
=O

(
(η + p)2n log n+ (η + p)3n

)
. (4.8)

If we assume constant η and p, then this simplifies to

O (n log n) . (4.9)

4.3. Storage Complexity. At level ν of the hierarchy, we must store F̂ and the factorization of
Ŵ for each partition. The matrix F̂ takes storage of size (η + p)n/pν , and the factorization of Ŵ takes
storage of size (η + p)2. Level ν of the hierarchy has pν such partitions, and so each level requires

O
(
pν((η + p)np−ν + (η + p)2)

)
= O(n(η + p) + pν(η + p)2)

storage. As there are log n levels, the total storage complexity is

O

logp n∑
ν=1

n(η + p) + pν(η + p)2

 =O
(
(η + p)n log n+ (η + p)2n

)
.

5. Preconditioning. When a graph of interest does not have a hierarchy of p-cuts of size η for
acceptably small p and η, we can can still use the above method to construct a preconditioner for the
associated linear system. Of the original graph G = (V,E), we build a support graph GS = (V,ES)
where ES ⊂ E such that GS has the desired hierarchical structure. Also let GO = (V,EO), where
EO = E \ ES .

Now, let L be the graph Laplacian matrix of G, LS the graph Laplacian of GS , and LO the graph
Laplacian of GO. Consider the use of LS as a preconditioner for L. We would typically write the
associated stationary iteration as

xt = (I − ω−1L−1S L)xt−1 + ω−1L−1S b (5.1)

for some parameter ω. However, as LS is a singular matrix, we need to define what we mean by L−1S .
Note that L and LS have the same null space, {α1, α ∈ R}, and so LS is invertible on range(L). The
solution to any linear system LSx = b is only determined up to a constant, so to define it uniquely we
select the solution such that xT1 = 0.

With the above definition of L−1S , i.e., L−1S = L†S , we wish to ensure that (5.1) is a convergent

iteration. To that end, note that the eigenvalues and eigenvectors of L†SL are the same as that of the
generalized eigenvalue problem

λLSx = Lx. (5.2)

Therefore, the eigenvalues of the error iteration matrix E = I − ω−1L†SL are

λ̃i = 1− ω−1λi, (5.3)

where λi is an eigenvalue of Equation (5.2). Thus, the iteration is convergent as long as |λ̃i| < 1 for all
i.

Now, for an eigenvalue λi, we have

λi =
〈xi, Lxi〉
〈xi, LSxi〉

= 1 +
〈xi, LOxi〉
〈xi, LSxi〉

. (5.4)
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Fig. 5.1. The blue line shows the first 200 eigenvalues for the matrix L†SL on the Epinions1 and Slashdot0811
networks with a maximum atomic subset size of 256, as well as on a 256 × 256 2D grid with a maximum atomic subset
size of 64. The dotted red lines show the top eigenvalues of restricting to vectors that are constant on atomic subsets; that
is, the square roots of eigenvalues of HTH in Equation (6.3).

Graph Laplacians are positive semidefinite, and so we see that λi ≥ 1 for all i.
Therefore, |λ̃i| < 1 ∀i if and only if ω > λ1/2, where λ1 is the largest eigenvalue of Equation (5.2).
For small-to-medium sized graphs, this preconditioner is often highly effective on its own. However,

for larger graphs, this may not be the case.
To illustrate why, consider Figure 5.1, which shows the top part of the spectrum for the precondi-

tioned matrix L†SL in solid blue lines for a few example networks. The graphs used are the Epinions1
and Slashdot0811 networks from the Stanford Large Network Database [10], as well as a 256 × 256 2D
grid. As can be seen, the eigenvalues tend to follow a distrbution that is visually similar to a power
law, where the vast majority of the eigenvalues are quite close to 1, but a significant number of large
eigenvalues still exist.

As can be seen here, the largest eigenvalue can be quite large. In fact, suppose that the initial cut
bisecting G has nβ edges in it, for some 0 < β < 1. There are only η such edges in the support graph
GS , so if

x =
[
1T − 1T

]T
,

with all 1’s on one side of the cut and all -1’s on the other, then

〈x, Lx〉
〈x, LSx〉

∝ nβ .

In 3D grids, β = 2/3, and in social networks, we expect β to typically be near 1. This suggests that
LS by itself is not an effective preconditioner for social networks. In the following section, we show how
these damaging error modes can often be mitigated by using a two-grid preconditioning scheme.

6. Two-Grid Preconditioning. As discussed above, a few large eigenvalues of L†SL tend to dam-
age the condition number of the system. We can avoid much of this problem through the use of two-grid
preconditioning.
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6.1. A Two-Grid Preconditioner.

6.1.1. Elements of a Multilevel Preconditioner. Traditional algebraic multigrid makes use of
two ingredients: a smoother and a coarse-grid correction. The smoother is a preconditioner M−1 whose
application tends to most effectively shrink those error modes associated with the largest eigenvalues of
M−1L, such as a Jacobi or Gauss-Seidel iteration.

The coarse-grid correction, on the other hand, shrinks those error modes associated with the smallest
eigenvalues (the algebraically smooth modes) of M−1L. This is done by defining an interpolation operator

P ∈ R+n×nc , nc � n, that spans a coarse subspace and an associated coarse matrix Lc = PTLP . Note
that we impose P to have nonnegative entries. One then makes a coarse-grid correction by restricting
the current residual to the coarse subspace and solving the resulting problem with Lc. Note that if the
rows of P sum to 1, then Lc is also a graph Laplacian.

Definition 6.1 (Solving problems with a coarse graph Laplacian).
Let P be a piecewise constant interpolant such that P1c = 1 and form Lc = PTLP . For any given

bc : (1c)
T bc = 0, we define the unique solution to the coarse problem

Lcxc = bc,

as follows. We select xc such that (1)TPxc = 0, which is equivalent to (1c)
T (PTP )xc = 0, or

(Pxc)
T (P1c) = 0. We use the notation xc = L†cbc.

The traditional combined three-step AMG preconditioner reads as follows:
1. Apply smoother:

xt+ 1
3

= (I −M−1L)xt +M−1b.

2. Apply coarse-grid correction:

xt+ 2
3

= (I − PL†cPTL)xt+ 1
3

+ PL†cP
T b.

3. Apply smoother (in a symmetric fashion):

xt+1 = (I −M−TL)xt+ 2
3

+M−T b.

This results in an error iteration matrix

E = (I −M−1L)(I − PL†cPTL)(I −M−1L). (6.1)

The (weighted) Jacobi smoother M performs local updates only. This leaves global error components
which can be targeted by a coarse-grid correction. In our case, LS is a global operator (similar to L)

rather than a local operator. After applying L†S , most of the error is eliminated, but, as we argue in
Section 6.1.2, still there are error components that can be well approximated by a coarse-grid correction.
We note that in these two cases we are looking at the spectra of two different operators, L†SL and M−1L.

6.1.2. A Coarse Subspace. Assume that the nodes in G are ordered according to their hierachical
decomposition as described in Section 3. Let

`i =
[
0T · · · 0T 1T 0T · · · 0T

]T
,

that is, the vector with ones on the nodes V νMi of an atomic subset, and zeroes everywhere else. Recalling
that νM is the deepest level of the bisection hierarchy of Section 3, consider the matrix

P̃ =
[√

n−1νM ,1`1 · · ·
√
n−1νM ,pνM `pνM

]
. (6.2)

Let

H = L†SLP̃ (6.3)

10



In Figure 5.1, we show the square roots of the first 200 eigenvalues of the matrix HTH for each network
in dashed red lines. This figure shows that these P̃ approximately span the invariant subspace associated
with the largest eigenvalues of L†SL.

So, define

P =
[
`1 · · · `pνM

]
. (6.4)

This matrix is the same as P̃ except all its nonzero entries are 1. Then span(P ) is our coarse subspace
of dimension nc = pνM . Note that, if one wishes to use a smaller coarse grid, one can simply take the
subsets associated with another hierarchy level ν.

6.1.3. A Two-Grid Preconditioner. Unlike Jacobi or Gauss-Seidel smoothing, because σ(L†SL) ≥
1, LS is not convergent as a stationary iteration without weighting the iteration in such a way that would
limit its effectiveness on the lowest-eigenvalue modes. This problem gets even worse if L†S is used as
M−1 in the traditional AMG method of Section 6.1.1, as Equation (6.1) shows that the eigenvalues of

(I − L†SL) would be squared. So, rather than placing the coarse-grid correction in the middle of the
two-grid preconditioner as in classical algebraic multigrid, we place LS in the middle. This leads to the
three-step preconditioner

1. Apply coarse-grid correction:

xt+ 1
3

= (I − PL†cPTL)xt + PL†cP
T b.

2. Apply LS :

xt+ 2
3

= (I − L†SL)xt+ 1
3

+ L†Sb.

3. Apply coarse-grid correction:

xt+1 = (I − PL†cPTL)xt+ 2
3

+ PL†cP
T b.

First of all, we note that the above algorithm is well-defined, namely, the actions of L†c, L
†
cP

TL, and

L†S , L†SL, are well-defined, since 1Tc (PTL) = (P1c)
TL = 1TL = 0 (see Definition 6.1).

The above algorithm has the following property: if 1Txt = 0, then also 1Txt+s = 0 for s =
1/3, 2/3, 1. This is due to the fact that 1TPL†c = 1Tc (PTP )L†c = 0 and 1TL†S = 0.

The above algorithm results in an error iteration matrix

E = (I − PL†cPTL)(I − L†SL)(I − PL†cPTL). (6.5)

We do not claim that E has a norm less than one (in fact, we have E1 = 1), rather we will use this
expression (or the algorithm above) to define a preconditioner B−1.

6.2. Analysis of the Two-Grid Preconditioner. We wish to develop the tools to analyze the
rate of convergence of this preconditioned system. Traditionally, a preconditioner is described by a
matrix B, but the action of the preconditioner is through the application of B−1. The convergence rate
of a preconditioned conjugate gradient iteration is then determined by

√
κ2/κ1 ([1]), where

κ1B � L � κ2B.

In our case, B is not known a priori, and so we study it by deriving B−1 from the above algorithm.
We can do this by assuming E = I −B−1L and writing (6.5) as

E =(I − PL†cPTL)(I − L†SL)(I − PL†cPTL)

=(I − PL†cPTL)(I − PL†cPTL)− (I − PL†cPTL)L†SL(I − PL†cPTL)

=I − PL†cPTL− (I − PL†cPTL)L†S(I − LPL†cPT )L

=I −B−1L,

11



where

B−1 =PL†cP
T + (I − PL†cPTL)L†S(I − LPL†cPT ).

We notice now that if b is such that 1T b = 0, then B−1b is well-defined. Indeed, since 1c
TPT b = 1T b =

0, L†cP
T b is well-defined. Also, L†Sb and L†SL are well-defined. Similarly, 1c

TPTL = 1TL = 0, hence
L†cP

TL is well-defined as well. An additional property of B−1 is that 1TB−1b = 0.

We have that L† is symmetric positive semi-definite, hence (L†)
1
2 is well-defined as a symmetric

positive semi-definite matrix. The following idenity holds:

L(L†)
1
2 = L

1
2 .

Now, consider

L
1
2 E(L†)

1
2 = (I − L 1

2PL†cP
TL

1
2 )(I − L 1

2L†SL
1
2 )(I − L 1

2PL†cP
TL

1
2 )L

1
2 (L†)

1
2 .

We also have,

L
1
2 (L†)

1
2 − L 1

2B−1L
1
2 = L

1
2 E(L†)

1
2 .

Therefore, for any x : 1Tx = 0, we have L
1
2 (L†)

1
2x = x, hence

xT (I − L 1
2B−1L

1
2 )x = yT (I − L 1

2L†SL
1
2 )y ≤ 0, (6.6)

where y = (I − L 1
2PL†cP

TL
1
2 )x. That is, the operator I − L 1

2B−1L
1
2 is negative semi-definite in the

subspace {x : 1Tx = 0}. In other words, the operator L† − B−1 is negative semi-definite in the same
subspace, which implies that B−1 is positive definite (since L† is positive definite) in the same subspace.
Hence, we can define its inverse, B, well-defined in the subspace {x : 1Tx = 0}. More over, we have
the inequality

B � L. (6.7)

We now present a useful lemma.
Lemma 6.2. Given two vector spaces V and W contained in some Rn, consider two matrices T

and N acting on vectors in Rn. We assume that T is symmetric and it maps V onto itself, whereas N
maps V onto W , i.e., for each w ∈ W there is a v ∈ V such that Nv = w. Moreover, we assume that
T −NTN is s.p.d. on V . Consider

Z = N
(
T −NTN

)−1
NT .

We have that Z is s.p.d. on W , hence invertible on W , and for each w ∈W ,

wTZ−1w

wTw
= −1 + min

v: Nv=w

vTTv

wTw
.

Proof. This lemma is similar to Lemma 3.1 of [6], as is its proof. For completeness we present its
proof here.

We first show that if NTw = 0 for w ∈ W , then w = 0. Indeed, since w = Nv for some v ∈ V ,
we have that NTNv = 0. The latter in particular implies vTNTNv = 0, i.e., ‖Nv‖ = 0 and hence
0 = Nv = w. This implies that Z is invertible, hence s.p.d. on W .

Consider now the constrained minimization problem:
Given w ∈W compute

1

2
vTTv 7→ min,

12



subject to Nv = w.
Forming the Lagrangian 1

2 v
TTv − λT (w −Nv), the necessary consitions for minimum give[

T NT

N 0

]
=

[
v
λ

]
=

[
0
w

]
.

An equivalent system is [
T −NTN NT

N 0

]
=

[
v
λ

]
=

[
−NTw
w

]
.

This system has unique solution since T −NTN : V 7→ V is s.p.d. and its negative Schur complement
Z = N(T −NTN)−1NT : W 7→W is also s.p.d. The solution equals,

v = −(T −NTN)−1NT (λ+w),
−Z(λ+w) = w.

That is,

v = (T −NTN)−1NTZ−1w.

Then,

wTZ−1w = −wT (λ+w) = −wTw −wTλ.

On the other hand

λTw = λTNv = vTNTλ = vT (−NTw − (T −NTN)v) = −‖w‖2 − vT (T −NTN)v.

That is, since v : Nv = w, we have

wTZ−1w = vT (T −NTN)v = −wTw + vTTv

Thus, using the fact that v is the minimizer, we have

wTZ−1w

wTw
= −1 + min

v: Nv=w

vTTv

wTw
,

which complets the proof.
We now present a formula for the condition number of B with respect to L viewed as s.p.d. operators

acting on the subspace S ≡ {x : 1Tx = 0}. This proof draws from that of Theorem 4.1 in [6].
Theorem 6.3. Let πL = PL†cP

TL, and let S denote the subspace {x : 1Tx = 0}. Then

B � L � κB. (6.8)

over the subspace S, where

κ = sup
w

((I − πL)w)
T
L ((I − πL)w)

wTLSw
. (6.9)

Proof. We first note that πL is a projection (as an operator acting on S). The same holds for its
symmeric version

πL = L
1
2PL†cP

TL
1
2 .

The fact that B � L was shown above (see (6.7)). To prove the other direction, use the fact that
for s.p.d. operators L and B (as mappings on S) we have

κ = sup
v∈S

vTL
1
2B−1L

1
2v

‖v‖2
.
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We note that the above maximum is achieved in the subspace {v = (I − πL)w, w ∈ S} ⊂ S. We have

κ = sup
v∈S

vTL
1
2B−1L

1
2v

‖v‖2
(6.10)

= sup
v∈S

vTL
1
2B−1L

1
2v

‖πLv‖2 + ‖(I − πL)v‖2
(6.11)

≤ sup
v∈S

vTL
1
2B−1L

1
2v

‖(I − πL)v‖2
(6.12)

= sup
w=(I−πL)v, v∈S

vTL
1
2B−1L

1
2v

‖w‖2
(6.13)

≤ κ. (6.14)

Using the fact that (I − πL) is a projection and Equation (6.6), note that, if v ∈ S,

vT (I − L 1
2B−1L

1
2 )v = ((I − πL)v)

T
(
I − ((I − πL))L

1
2L†SL

1
2 ((I − πL))

)
((I − πL)v)

≥(1− κ) ((I − πL)v)
T

((I − πL)v) .

This implies that for Z = (I − πL)L
1
2L†SL

1
2 (I − πL), we have (based on (6.10))

κ = sup
v∈S

vTZv

vT (I − πL)v
.

Now, let N = (I − πL)L
1
2 . Then NTN = L(I − πL).

Let T = LS +L(I−πL). Then T is symmetric and positive semi-definite. Furthermore, T −NTN =
LS . Therefore,

Z =(I − πL)L
1
2L†SL

1
2 (I − πL) = N(T −NTN)−1NT .

To use Lemma (6.2), introduce the spaces V = S and let W = range(I−πL)∩S. Then Lemma 6.2 gives

κ = sup
w̃∈W

w̃TZw̃

w̃T w̃
= sup

w̃∈W

w̃T w̃

w̃TZ−1w̃
=

1

infw̃∈W

(
−1 + infv:Nv=w̃

(
vTTv/w̃T w̃

)) .
Now, let w̃ = L

1
2w. Then (w̃)T w̃ = wTLw, and

Nv = L
1
2w

=⇒ L
1
2w = (I − πL)L

1
2v

=⇒ w = (I − πL)v.

Note that w ∈ range(I − πL) ∩ S, which we denote W . This leads to

κ−1 = inf
w∈W

(
inf

v:(I−πL)v=w

vTTv

wTLw
− 1

)
.

But

vTTv =vTLSv + vTNTNv = vTLSv +wTLw,

so

κ−1 = inf
w∈W

inf
v:(I−πL)v=w

vTLSv

wTLw
= inf

v:v∈S

vTLSv

((I − πL)v)
T
L ((I − πL)v)

.
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But both the numerator and the denominator ignore any components of v in the direction of S⊥ = {α1},
so we may write this simply as

κ = sup
v

((I − πL)v)
T
L ((I − πL)v)

vTLSv
. (6.15)

This completes the proof.
Corollary 6.4. When used in combination with the preconditioned conjugate gradient method, the

number of iterations required when using the two-grid preconditioner of Section 6.1 is bounded by O(
√
κ),

where κ is given in Equation (6.9).
Remark In this paper we have not provided specific algorithms for constructing the partition hierarchy
or for deciding which edges to keep for LS . We can, however, use the above theorem to develop some
guidelines. Decompose L as L = LW +LB , where LW is a disconnected graph Laplacian with the edges
within the smallest-level atomic subsets GνMi and LB is a graph Laplacian with the between-subset
edges. Note that all within-atomic subset edges are part of the support graph Laplacian LS , so LW is
itself a support graph Laplacian of LS . We can further decompose LB as LB = LBS + LBS⊥ , where
LBS contains the edges of LB that are in LS , and LBS⊥ contains the edges that are not. Note that
LS = LW + LBS .

The coarse grid ignores all within-atomic subset edges. That is, PT LW = 0T . Therefore,
Lc = PTLP = PTLBP . Thus, we may rewrite Equation (6.9) as

κ = sup
w

((I − πL)w)TL((I − πL)w)

wT (LW + LSB)w
,

where πL = P (PTLBP )†PTLB .
Suppose that

wTLw = wT (LW + LBS + LBS⊥)w ≈ wTLBS⊥w.

In this case, the denominator of Equation (6.9) will be small. Suppose further that PTLBw ≈ 0. This
can happen, for example, through “parallel edges” in LBS⊥ , that is, multiple edges stretching between the
same two atomic subsets. Then the numerator of Equation (6.9) is approximately wTLw ≈ wTLBS⊥w,
which is by assumption not small. That is, we have a small denominator and a large numerator, resulting
in a large κ.

So, we would like to construct the partition hierarchy and LS to avoid this situation. This leads to
the following guidelines:

1. The atomic subsets should be as well-connected as possible, so that wTLWw is as large as
possible.

2. Often, high-degree nodes have more incident edges than can be captured in LSB . Therefore, as
much as possible, high-degree nodes and their neighbors should be placed in the same atomic
subset.

3. Suppose u and v are two high-degree nodes, are placed in the same atomic subset, and have
many neighbors in other atomic subsets. Then the intersection between u’s neighboring atomic
subsets and v’s neighboring atomic subsets should be as small as possible. Otherwise, a w such
that wu ≈ −wv with zeros everywhere else can result in a large κ.

7. Experiments. In this section we present experiments to demonstrate the efficiency of the algo-
rithms presented here.

7.1. Direct Solver Scaling. In this section we demonstrate the scaling behavior of the direct
solver described in Section 3. We recursively construct a graph Laplacian as follows:

1. If constructing a graph of size N ≤ 8, add 20 edges uniformly at random. If the resulting graph
is not connected, try again.

2. If constructing a graph of size N > 8, construct two graphs each of size N/2 and connect them
with 8 edges selected uniformly at random.
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Fig. 7.1. Time to construct a solver (red X), and time to perform a solve (blue +) using the direct solver of Section 3
on graphs that can be recursively bisected with cuts of size 8. Dotted red and solid blue lines connect sample means of 8
samples each.

We do this for a range of graph sizes. For each graph size, we perform the test 8 times. The results
of this scaling test can be seen in Figure 7.1. Along the x-axis is the total size of the graph being tested.
The red line shows the mean time to perform the decomposition to construct the solver, while the blue
line shows mean time to perform a solve after the solver has been constructed.

The favorable scaling of this method is clear, as the plot appears nearly linear.

7.2. Preconditioning. In this section we explore the effectiveness of using our method as a pre-
conditioner within the Preconditioned Conjugate Gradient method.

We have not, in this paper, specified methods for computing the recursive bisection on a graph or
deciding which edges to keep between atomic subset in the support graph LS . For 2D and 3D grids, we
select the longest axis-aligned dimension and cut along its middle, spreading the support graph edges
out evenly along that cutting plane.

For other graphs, we recursively bisect using METIS [8], constrained to give connected partitions,
and we select edges to keep in LS uniformly at random. We believe this to be a reasonable heuristic for
guidelines 1 and 2 at the end of Section 6.

First, we test the behavior of our method on four different types of artificial graphs:
• Two-dimensional square grids.
• Three-dimensional cube grids.
• Watts-Strogatz random graph models [14].
• Barabási-Albert random graph models [3].

The Watts-Strogatz random graph model is a “ring lattice with random rewiring.” It a popular
random graph model used to capture behavior in which groups of nodes tend to be tightly clustered but
still have some “long range” edges. An example can be seen in Figure 7.2(a).

The Barabási-Albert random graph model is a popular “preferential attachment” model in which
nodes are added to the graph sequentially. New nodes are connected to other nodes at random, with
the probability of connection proportional to the degree of that node. It captures the skewed degree
distribution present in many social networks, though there is no clustering in this model. An example
can be seen in Figure 7.2(b).

Although artificial graphs are different from real-world graphs, they are useful because they allow
us to study the behavior of our method as the size of the problem grows on a given class of graphs.
For each of the above four graph types, we examine rates of convergence while varying problem size,
acceptable support graph cut size, and coarse graph size.

In the following, let nA denote the maximum atomic subgraph size and let nc denote the coarse
graph size. Unless stated otherwise, the number of edges per cut in the support graph is also nA.
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(a) A sample Watts-Strogatz graph. (b) A sample Barabási-Albert graph.

7.2.1. Constant Cut Size, Linear Coarse Graph Size. Here we study the behavior of our
method when the maximum atomic subgraph and support graph cut size are kept constant, but the
coarse grid size nc is allowed to grow linearly.

Figures 7.7 and 7.8 show the results of these tests on artificial graphs. These tests show that the
coarse-grid correction drastically improves performance of PCG in most cases.

On grids, after an initial rise, the convergence rate of the two-grid method is independent of graph
size. Note that some tests only require a single iteration because the cut size is large enough that LS = L
in those cases.

On Watts-Strogatz graphs, we test with mean degree k = 10 and rewiring probability β = 0.1.
The rate of growth of iteration count is largely independent of nA, but increasing nA tends to improve
convergence by a constant.

On Barábasi-Albert graphs, we test with new node degree m = 10. The displayed regression lines
are less informative here, especially for nA = 256. However, we see that increasing nA tends to improve
convergence for smaller graphs, and slightly hamper convergence for larger graphs.

In Figure 7.2, we test on an array of networks from the Stanford Large Network Database, [10], and
the 10th DIMACS Challenge, [2]. For a complete list of the networks tested, see Appendix 9.

As nA grows, both the one-level and two-level methods improve, but the difference between the two
shrink. This suggests that the increasing cut size tends to matter more than the decreasing coarse-grid
size. This is different behavior than seen in the Barábasi-Albert model; we hypothesize that this is due
to the tendency of real-world networks to cluster, while Barábasi-Albert graphs have no clustering.

7.2.2. Increasing Cut Size, Constant Coarse Grid Size. In this section we examine purely
the effect of increasing the acceptable cut size in the support graph without changing nA or the size of
the coarse graph. We study a 2D grid of size 320× 320, a 3D grid of size 47× 47× 47, a Watts-Strogatz
graph of size 103,000, and a Barábasi-Albert graph also of size 103000. We use the same parameters
for the random graph models as in the previous section. The results in Figure 7.3 show that while both
methods improve with increasing acceptable cut size, the two-level method is significantly less sensitive
to these changes.

We also tested increasing cut sizes on a selection of real-world networks. These results can be seen
in Figure 7.4. Again we see that while increasing cut size improves convergence, the two-level method
is less sensitive to this change than the one-level method.

7.2.3. Constant Cut Size, Increasing Coarse Grid Size. In this section we examine purely
the effects of shrinking coarse node size, or equivalently, increasing coarse grid size nc, without changing
nA or the acceptable cut size. As in the previous section, we study a 2D grid of size 320 × 320, a 3D
grid of size 47 × 47 × 47, a Watts-Strogatz graph of size 103,000, and a Barábasi-Albert graph also of
size 103000. We use the same parameters for the random graph models as above. Note that the size of
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Fig. 7.2. Iterations required to reach a residual norm of 10−6 and log-log regression lines for various real-world graphs
obtained from SNAP and the 10th DIMACS Challenge. Maximum atomic subgraph size is 16, 64, and 256, respectively.

a coarse grid scales approximately linearly with the inverse of the coarse node sizes. We choose sets of
nodes to aggregate in the creation of a coarse graph as subsets V νi obtained in the partition hierarchy.

The results in Figure 7.5 show that the rate of convergence is most improved on 2D grid, 3D grid,
and Watts-Strogatz graphs for smaller coarse nodes, but that the Barábasi-Albert graphs still show
significant improvement even for large coarse node sizes. However, the Barábasi-Albert graphs still
require the most iterations.

We also tested shrinking coarse node size (increasing nc) on a selection of real-world networks.
These results can be seen in Figure 7.6. Most of the real-world graphs show significant improvements
in convergence as the coarse nodes shrink, except for soc-Slashdot0811, which improves but not as
drastically.

8. Conclusion. In this paper, we presented a parallelizable method for solving graph Laplacian-
based linear systems derived from graphs that can be hierarchically bipartitioned with small edge cuts
and showed that this method solves such systems in time O(n log n). We then used this method to
construct a support graph-based preconditioner for graph Laplacian systems that do not have this
property. Finally, we augmented this method with a two-grid approach to account for the weaknesses
in the one-level preconditioner. We presented an analysis of the two-grid method, as well as a theorem
deriving the condition number of two-grid support graph-based preconditioners.

We did not develop methods for partitioning a graph, or for selection of edges to keep in a support
graph. Future work will include addressing these issues, especially in the context of graph Laplacians
derived from real-world networks. In addition, we will explore the use of recursive coarse-grid corrections
in a multigrid method.
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Watts-Strogatz Barábasi-Albert
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Fig. 7.3. Maximum cut size in LS vs. iterations required to reach a residual norm of 10−6 for several artificial
graphs. All graphs have approximately 103,000 nodes. While both one-level and two-level methods improve with increasing
cut size, the two-level method is significantly less sensitive.
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9. Appendix: List of Real-World Graphs Tested.
• SNAP Networks

– ca-CondMat
– ca-GrQc
– soc-Epinions1
– soc-Slashdot0811
– amazon0302
– ca-HepTh
– ca-HepPh
– email-Enron

• 10th DIMACS Networks
– citationCiteseer
– caidaRouterLevel
– coAuthorsCiteseer
– coAuthorsDBLP
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Fig. 7.4. Maximum cut size in LS vs. iterations required to reach a residual norm of 10−6 for several real-world
networks. While both one-level and two-level methods improve with increasing cut size, the two-level method is less
sensitive.
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Fig. 7.5. Inverse coarse node (∝ nc) size vs. iterations required to reach a residual norm of 10−6 for several artificial
graphs. All graphs have approximately 103,000 nodes. While most graph types show improved convergence with increasing
coarse grid size (i.e. shrinking coarse node size), the Barábasi-Albert graphs show significantly improved convergence even
for small coarse grids.

23



ca-Cond mat vsp mod2

2-11 2-10 2-9 2-8 2-7 2-6 2-5 2-4

Inverse Coarse Node Size

25

26

27

It
e
rs

 t
o
 C

o
n
v
.

One-Level Prec.
Two-Level Prec.

2-11 2-10 2-9 2-8 2-7 2-6 2-5 2-4

Inverse Coarse Node Size

26

27

28

29

It
e
rs

 t
o
 C

o
n
v
.

One-Level Prec.
Two-Level Prec.

soc-Epinions1 soc-Slashdot0811

2-11 2-10 2-9 2-8 2-7 2-6 2-5 2-4

Inverse Coarse Node Size

26

27

28

29

It
e
rs

 t
o
 C

o
n
v
.

One-Level Prec.
Two-Level Prec.

2-11 2-10 2-9 2-8 2-7 2-6 2-5 2-4

Inverse Coarse Node Size

26

27

28

29

It
e
rs

 t
o
 C

o
n
v
.

One-Level Prec.
Two-Level Prec.

email-Enron

2-11 2-10 2-9 2-8 2-7 2-6 2-5 2-4

Inverse Coarse Node Size

26

27

28

It
e
rs

 t
o
 C

o
n
v
.

One-Level Prec.
Two-Level Prec.

Fig. 7.6. Inverse coarse node size vs. iterations required to reach a residual norm of 10−6 for several real-world
networks. Some graphs behave like the Watts-Strogatz grahs of Figure 7.5, others behave like the Barábasi-Albert graphs.
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Fig. 7.7. Iterations required to reach a residual norm of 10−6 for 2D and 3D grids using both our one-level and two-
level preconditioners with maximum atomic subgraph size nA, support graph cut size nA, and coarse grid size nc ≈ n/nA.
After an initial rise, iteration count is independent of graph size.
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Fig. 7.8. Iterations required to reach a residual norm of 10−6 for Watts-Strogatz and Barábasi-Albert graphs using
both our one-level and two-level preconditioners with maximum atomic subgraph size nA, support graph cut size nA, and
coarse grid size nc ≈ n/nA. Two-grid performance on larger graphs is robust to variations in nA.
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